miércoles, 11 de mayo de 2011

circuitos tipos

 En electricidad, la teoría de circuitos es aquella que comprende los fundamentos para el análisis de circuitos eléctricos y permite determinar los niveles de tensión y corriente en cada punto del circuito en respuesta a una determinada excitación.
La teoría de circuitos es una simplificación de la Teoría Electromagnética de Maxwell, estas simplificaciones se basan en la consideración de corrientes cuasiestacionarias, lo que implica que sólo puede aplicarse cuando la longitud de onda de las señales (ondas electromagnéticas) presentes en el circuito es mucho mayor (x100 o más) que las dimensiones físicas de éste. Esto quiere decir que la propagación de las ondas en el circuito es instantánea. A estos circuitos a veces se les llama circuitos de parámetros concentrados.
Las líneas de transmisión, por ejemplo una línea telefónica, su comportamiento no puede estudiarse con la teoría de circuitos porque son demasiado largas. En lugar de ello se usa un modelo de parámetros distribuidos (modelo de Heaviside).
Históricamente, la teoría de los circuitos eléctricos recibió el nombre de Electrocinética y se desarrolló de una forma independiente de la Teoría Electromagnética. Las bases de esta rama de la Ingeniería Eléctrica están en la ley de ohm y las leyes de kirchoff, y fueron aplicados inicialmente a corrientes que no variaban con el tiempo dada la utilización de generadores de corriente continua, como las pilas eléctricas. Sin embargo, cuando apareció la corriente alterna, la teoría debió adecuarse al tratamiento de cantidades que variaban sinusoidalmente en el tiempo, lo cual introdujo el uso de vectores estacionarios o fasores.
En los estudios universitarios de ingeniería eléctrica o electrónica suele darse como una asignatura cuyo objetivo es permitir el progreso del futuro ingeniero en las materias de naturaleza eléctrica o electrónica.
Para el aprendizaje de la teoría de circuitos es necesario tener unos conocimientos matemáticos básicos en geometría, resolución de sistemas de ecuaciones lineales, aritmética denúmeros complejos y cálculo diferencial e integral. También es importante conocer los conceptos eléctricos de cargapotencialcampo electromagnéticocorrienteenergía y potencia.


concepto de energia


El concepto de energía en física

En la física, la ley universal de conservación de la energía, que es la base para el primer principio de la termodinámica, indica que la energía ligada a un sistema aislado permanece en el tiempo. No obstante, la teoría de la relatividad especial establece una equivalencia entre masa y energía por la cual todos los cuerpos, por el hecho de estar formados de materia, contienen energía; además, pueden poseer energía adicional que se divide conceptualmente en varios tipos según las propiedades del sistema que se consideren. Por ejemplo, laenergía cinética se cuantifica según el movimiento de la materia, la energía química según la composición química, la energía potencial según propiedades como el estado dedeformación o a la posición de la materia en relación con las fuerzas que actúan sobre ella y la energía térmica según el estado termodinámico.
La energía no es un estado físico real, ni una "sustancia intangible" sino sólo una magnitud escalar que se le asigna al estado del sistema físico, es decir, la energía es una herramienta o abstracción matemática de una propiedad de los sistemas físicos. Por ejemplo, se puede decir que un sistema con energía cinética nula está en reposo.
Se utiliza como una abstracción de los sistemas físicos por la facilidad para trabajar con magnitudes escalares, en comparación con las magnitudes vectoriales como la velocidad o laposición. Por ejemplo, en mecánica, se puede describir completamente la dinámica de un sistema en función de las energías cinética, potencial, que componen la energía mecánica, que en la mecánica newtoniana tiene la propiedad de conservarse, es decir, ser invariante en el tiempo.
Matemáticamente, la conservación de la energía para un sistema es una consecuencia directa de que las ecuaciones de evolución de ese sistema sean independientes del instante de tiempo considerado, de acuerdo con el teorema de Noether.

electronica y electricidadhttp://es.wikipedia.org/wiki/Electricidad#Osciloscopio






Electricidad

La electricidad (del griego ήλεκτρον elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros1 ,2 3 4 en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.5 Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.
También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnologíaque la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas porinducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.

electronica y electricidadhttp://es.wikipedia.org/wiki/Electricidad#Osciloscopio


La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.

Electricidad


La electricidad (del griego ήλεκτρον elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros1 ,2 3 4 en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.5 Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.
También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnologíaque la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas porinducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.


electronica y electricidadhttp://es.wikipedia.org/wiki/Electricidad#Osciloscopio


La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.

Electricidad


La electricidad (del griego ήλεκτρον elektron, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros1 ,2 3 4 en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.5 Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.
También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnologíaque la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas porinducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.